Diagnosing & Managing Treatment Failure

Yunus Moosa UKZN

Overview

- CD4 and VL as biomarkers
- Causes of treatment failure
- Mechansim of Virologic resistance
- Defining Virologic failure
- Limitations of genotypic testing
- Genetic barriers to resistance
- Mutations- rationale for stepwise regimens
- Case Discussion depending on time.

Goal of HAART

Durable Viral Suppression Undetectable Levels

Halt disease progression

Immunological recovery **Reduce Ols**

Prevent drug resistance

Reduce viral transmission

Factors that Contribute to Treatment Failure

Sub-optimal potency of regimen
Insufficient drug levels

Non adherence Nalabsorption - Malabsorption - Drug Hiteral Sion y (Fierbal meds, OTO Sistance

Resistant virus

Bio Marker

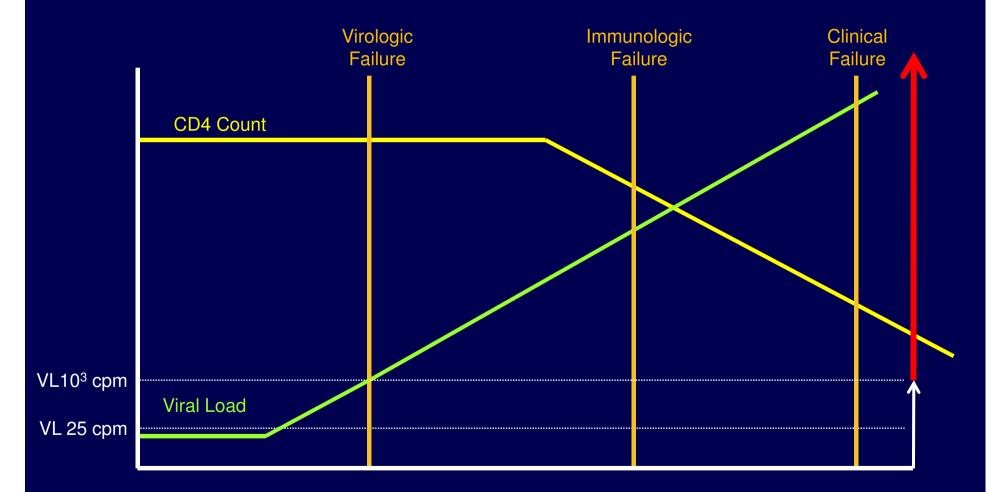
- You can only monitor if you can measure
 - -Viral load
 - -CD4 count
- Need to know what to expect to interpret

Value of CD4 count

Therapeutic decisions -antiviral treatment, prophylaxis)
 Differential diagnosis of OIs
 Predicting prognosis

CD4 count - 500-1400/µL

- 3 analytic steps ⇒ total WCC, % LC, % CD4 ⇒ wide analytic variation
- Seasonal variation, diurnal variation.
- Inter-current illness
- Corticosteroids.
- Splenectomy.
- Age in adults, gender, psychological stress, physical stress, pregnancy ⇒ no effect


Trend needs to be monitored

Viral load

Plasma HIV RNA load ⇒ most representative and sensitive test for monitoring:

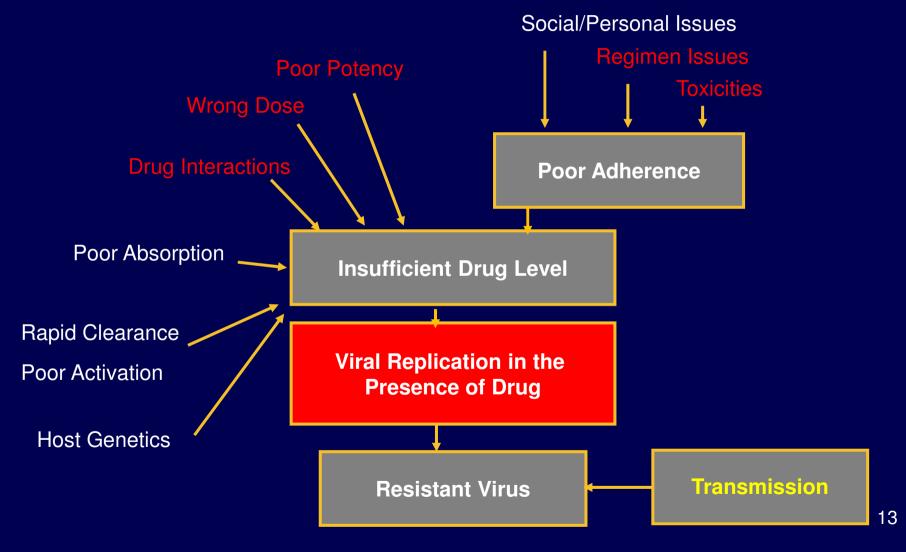
- Risk of progression.
- Response to ART
- Failure of ART.
- VL change >0.3 log (2 fold) is signif.

Measuring Viral Load→ Earliest & most sensitive Marker of Rx Failure

Murri R, *et al. JAIDS*. 2006;41:23-30. Losina E *et al*, *15th CROI* 2008, #823 Pillay D, *et al*. *14th CROI*, Los Angeles 2007, #642

Viral Load Response Expected decay in VL in ART naïve patients on potent ART: 0.75 - 1 Log₁₀ in one week 1.5 - 2 log₁₀ in 4 weeks (<5000cpm)</p> <500cpm in 8-16 weeks</p> <50 24-48 weeks</p>

Virologic/Treatment failure


2 consecutive viral loads >1000cpm

Treatment failure

Check for:

- Adherence
- Tolerability
- Dosing schedule
- Drug interactions
- Repeat VL in 2 months >1000 ⇒ change regimen

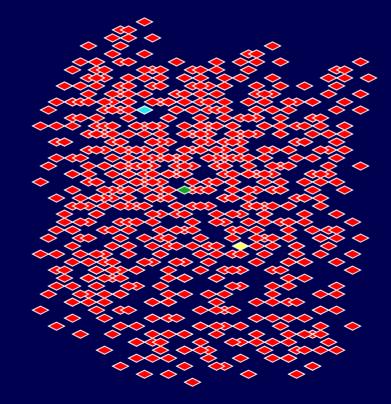
Factors that contribute to the Development of Resistance

How Resistance Mutations Arise • HIV replication \Rightarrow error prone: DNA Replication 1:10⁹ HIV Replication 1:10⁴ RNA Synthesis 1:10⁴ Airline Baggage Loss 1:200 Good Typist 1:100 10⁹ viral particles produced/day All possible mutations emerge daily Persistence of mutant depends on fitness

Modified from http://hivinsite.ucsf.edu

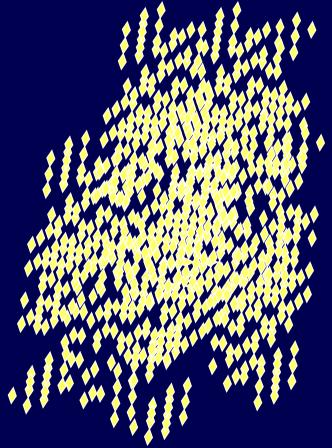
Growth in the absence of inhibitory pressure

HIV multiplies freely taking the most optimum form for rapid growth \rightarrow wt.


As it proliferates, HIV undergoes spontaneous mutations in random genes due to error prone RT enzyme.

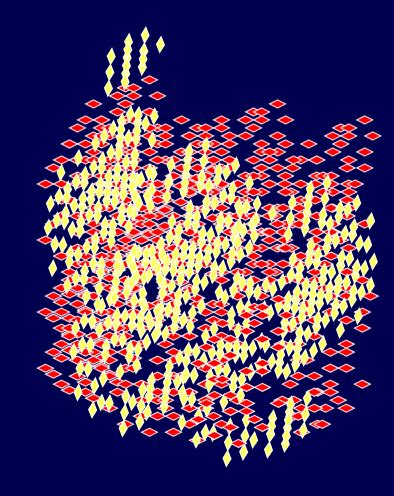
Growth in the presence of ARV pressure

ARVs kill all of the original wild type organisms


but

The mutated virus which is RESISTANT survives.

Growth in the presence of ARV pressure


- The mutated HIV grows and multiplies, even in the presence of ARVs.
- This virus is now RESISTANT and will continue to replicate albeit at a slower rate due to reduced fitness.

Growth in the absence of ARVs Treatment Interruption

Wt. - replicative advantage

Wt. -dominant species

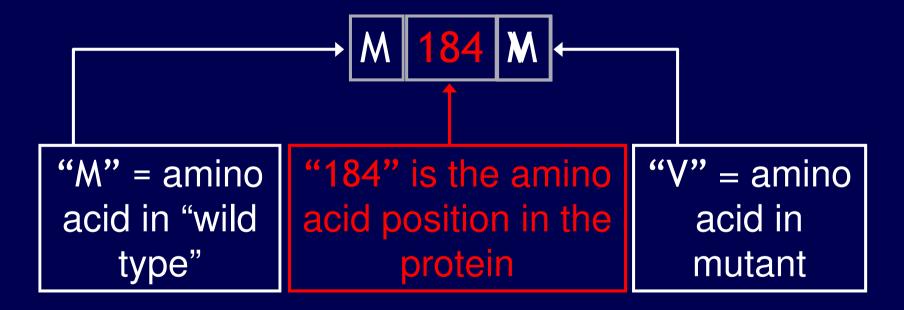
Resistance is Irreversible

- Once selected resistance mutations remain archived in mononuclear cells
- When drug pressure is discontinued, mutations ↓ below 20% \Rightarrow not detected
- Recycling drugs ⇒ rapid reappearance (>20%)
 history of drug use is critical.

Johnson et al. XV int. HIV Drug Resistance Workshop, 2006, #69. Palmer et al. PNAS 103 (no. 18) 2006: 7094-7099

Facts on resistance testing

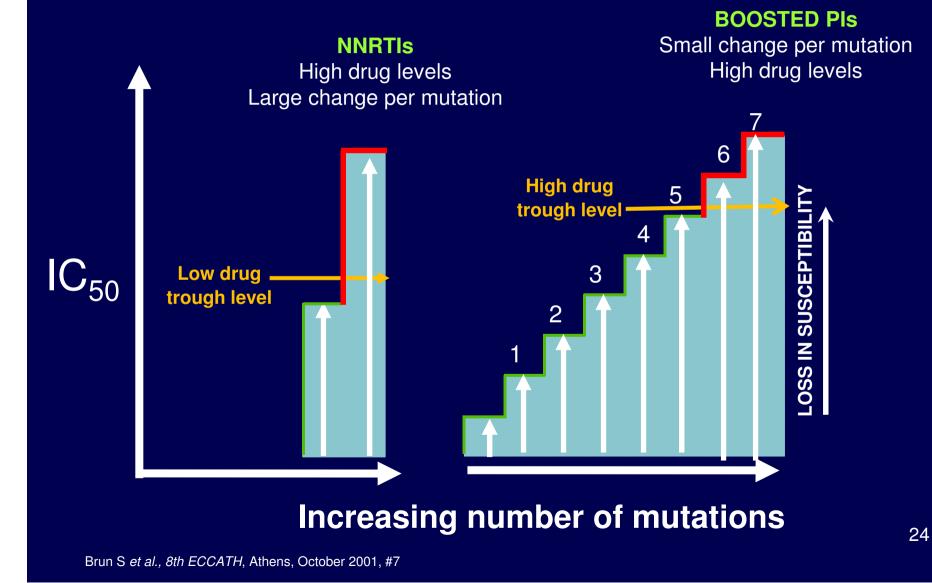
- Minimum VL required 1000 cpm
- Measures dominant HIV strains (>20%)
- Does <u>not</u> detect virus in sanctuary sites
- Does <u>not</u> detect mutant viruses selected by previous treatments that are "archived"
- Important to obtain comprehensive past drug history & outcome of past regimens


Facts on resistance testing

- Tells you what will not work, not what will work
- Most reliable for indicating Ω to drugs pt is currently on or recently discontinued

Resistance testing must be done when the patient is on the failing regimen

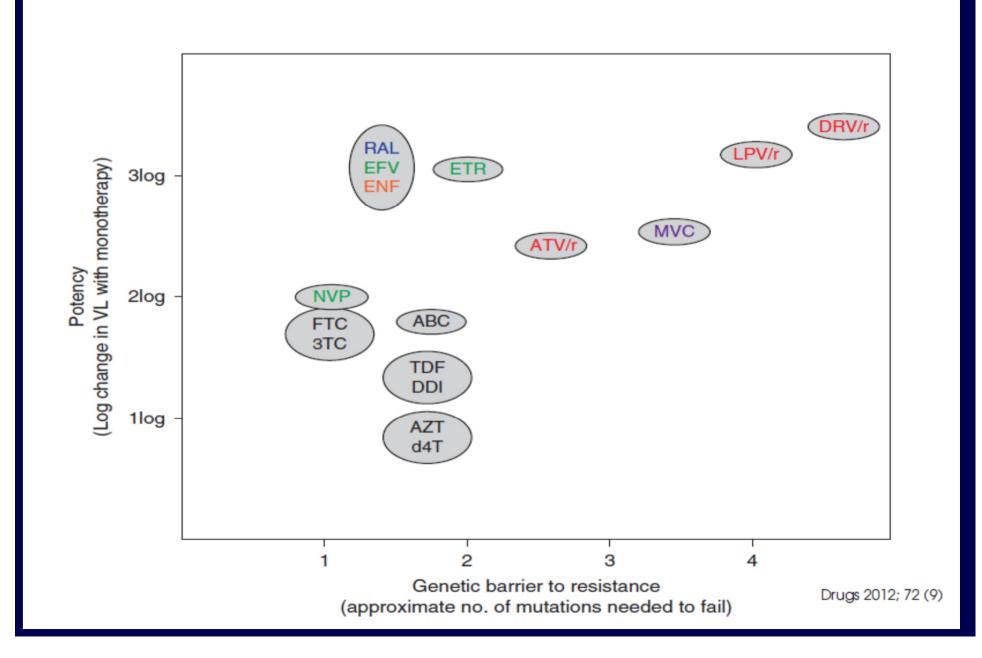
Designation of Mutations


How do we identify a resistance mutation?

All drugs are not equally susceptible to resistance: Genetic Barrier to Ω

- The genetic barrier to resistance describes:
 - The number of mutations the genome has to undergo to make the virus resistant to the drug.

Pharmacokinetic & Genetic Barriers to Resistance



Genetic Barrier of Drug Classes

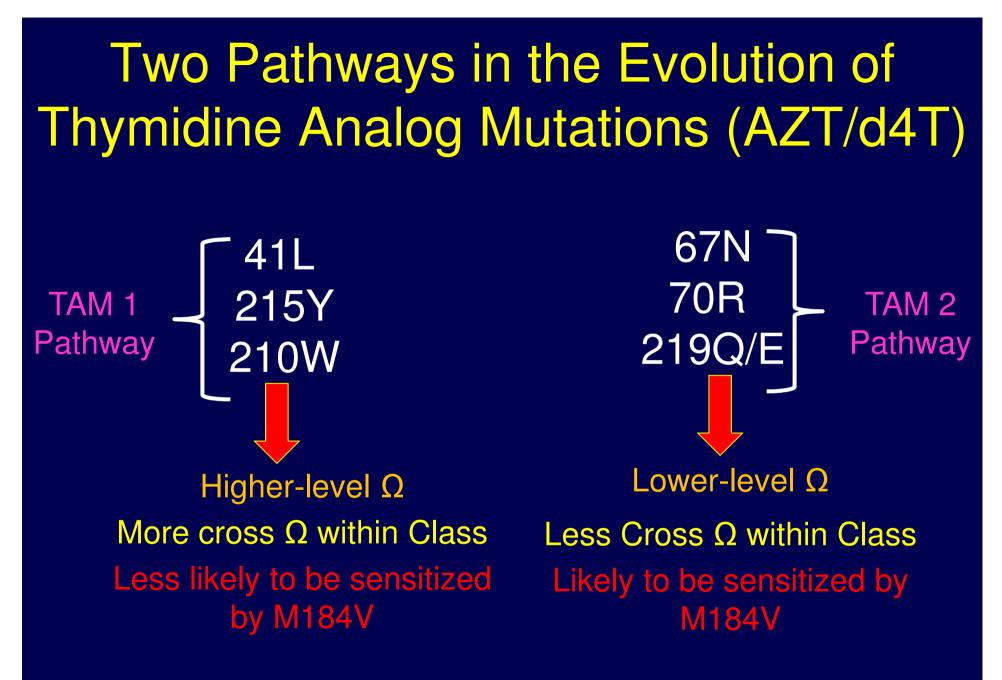
DRUG CLASS	GB
Unboosted PI	1
NNRTI	1
NRTI	1/2/3 *
Fusion Inhibitor	1
Boosted PI	3–8

*Up to 3 for thymidine analog mutations

Potency vs. Genetic barrier

Summary: GB to Resistance

- GB of 1 = 1 specific mutation for the drug to lose all activity
- GB of 6 = 6 mutations required for the drug to lose all activity
- Ritonavir boosted PI have a high GB
- NNRTI have a low GB
- A high GB implies there is far less selection of resistance when on a boosted PI based regimen compared to NNRTI based regimen


ABC of HIV Mutations

Effects of M184V

- High-level resistance to 3TC / FTC
- AZT, d4T activity enhanced
- TDF activity may be enhanced.
- Decreases 'viral fitness' decrease
 VL by about 0.5Log₁₀

Thymidine Analog Mutations TAMs

- Selected for by AZT and d4T
- 3-6 such mutations ⇒ reduces AZT susceptibility by 100 fold
- Accumulation of several mutations causes cross-resistance to other NRTIs
- M41L, D67N, K70R, L210W, T215Y/F, K219Q/E

K65R Mutation (Non-TAM)

- Selected by ABC, ddl, TDF, d4T.
- Decreases susceptibility to ABC, ddl, TDF & 3TC.
- Increases susceptibility to AZT in the presence of few TAMS
- Rarely occurs with TAMS & L74V
- Does not affect susceptibility to d4T.
- Reduces viral replication esp. with M184V

L74V Mutation (Non-TAM)

Selected by ddl and ABC,

Results in resistance to both drugs either alone (ddl) or together with other mutations (ABC)

HIV quasi species expressing L74V are more sensitive to AZT and TDF

Summary - NRTI Mutations to Remember

- TAMs: M41L, D67N, K70R, L210W, T215Y/F, K219Q/E – AZT, d4T, TDF, ABC, ddl
- M184V 3TC
- K65R TDF, ddl, ABC, 3TC
- L74V ddl and ABC

NNRTIs Resistance Mutations

- NNRTI mutations common at failure
- Often occurs as $1^{st} \Omega$ mutation.
- Most mutations \Rightarrow high level cross- Ω to other NNRTIs
- Mutations do <u>NOT</u> \downarrow replicative fitness
- Do not continue NNRTI if VL not suppressed ⇒ additional mutations will compromise 2nd generation NNRTIs

NNRTI Resistance Mutations

- K103N \Rightarrow high level resistance EFV & NVP
- Y181C high level resistance to NVP & low level resistance to EFV, sensitizes to AZT
- New generation NNRTI- have higher genetic barrier to resistance – main mutation is Y181C, active against K103N mutants
- Etravirine is more robust active against most strains resistant to 1st generation NNRTIs

PI Mutations

- Resistance most complex.
- 2 groups of mutations major and minor
- Major mutations develop first.
- Minor are usually compensatory mutations

Major Protease Inhibitor (PI) Resistance Mutations

	30	32	46	47	48	50	54	76	82	84	88	90
Cons	D	V	Μ		G	1	1	L	V	1	Ν	L
ATV/r			IL	V	VM	L	VTALM		ATFS	V	<u>S</u>	Μ
DRV/r		I		VA		V	LM	V	F	V		
FPV/r		L	IL	VA		V	VTALM	V	ATSF	V		Μ
IDV/r			IL	V			VTALM	V	AFTS	V	S	Μ
LPV/r			IL	VA	VM	V	VTALM	V	AFTS	V		Μ
NFV	N		IL	V	VM		VTALM		AFTS	V	DS	M
SQV/r					VM		VTALM		AT	V	S	Μ
TPV/r			IL	VA			VAM		TL	V		

Don't have to know mutations

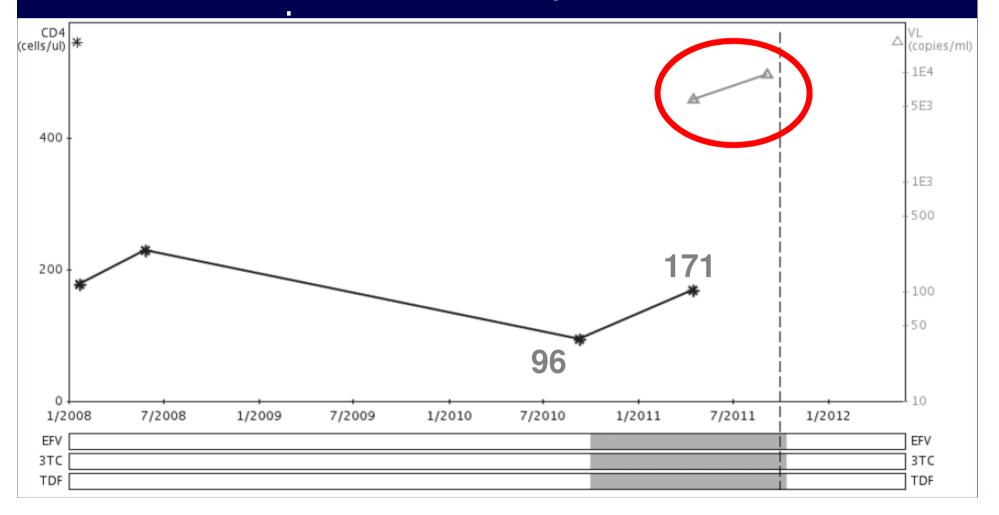
HIV Drug Resistance Database Stanford

http://hivdb.stanford.edu/

Early Warning Indicators

HIVDR Early Warning Indicators (EWI)

- Pharmacy refill
- Clinic visits
- Pill counts self reported adherence
- Clinical risk factors
- Psychosocial risk factors


40

Case 1

39yr \bigcirc diagnosed HIV in pregnancy in 2007 CD4<200, sdNVP at delivery. 09/2010 initiated TDF/3TC/EFV. She attended every each clinic visit on time, knew names & dosages of her ART, disclosed to family Counseling \Rightarrow no specific barriers to adherence. History revealed a diagnosis of epilepsy on phenobarbitol 30mg dly x ~20yrs & asthma on budesonide & salbutamol inhalers.

Case 1: Clinical chart

At 6/12 and 12/12 suboptimal viral

Case 1: Mutations

Drug	Mutations	Description	Level	GSS
zidovudine	184V	Susceptible	1	1.0
zalcitabine	N/A	N/A	N/A	N/A
didanosine	184V	Susceptible	1	1.0
lamivudine	184V	High-level resistance	5	0.0
stavudine	184V	Susceptible	1	1.0
abacavir	184V	Potential low-level resistance	2	1.0
emtricitabine	184V	High-level resistance	5	0.0
tenofovir	184V	Susceptible	1	1.0
nevirapine	103N 108I 225H	High-level resistance	5	0.0
delavirdine	103N 108I 225H	High-level resistance	5	0.0
efavirenz	103N 108I 225H	High-level resistance	5	0.0
etravirine	103N 225H	Low-level resistance	3	0.5

Case 1: Interpretation

- Pt. failing for a short time
- Only NNRTI resistance (K103N, P225H, V108I) and the M184V mutation
- AZT & TDF remain viable options.
- Both std. 2nd line regimens (AZT/3TC/LPVr and TDF/3TC/LPVr) are genotypically susceptibility

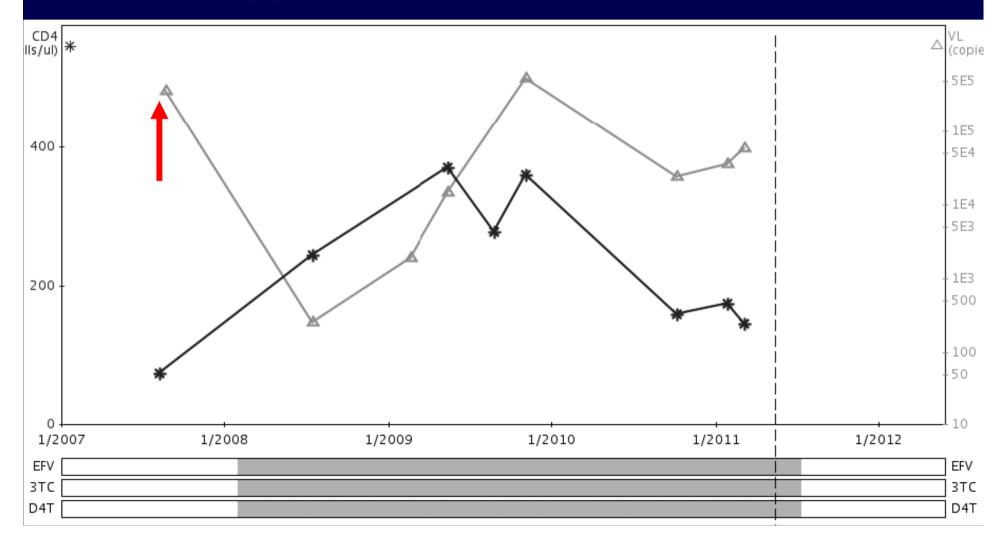
Case 1: Recommendations

- Should do well on a standard second-line
- Can use AZT if Hb>10 g/dl and does not have a high risk of metabolic complications.
- Test for HBV- if has active HBV use TDF.
- Intensive adherence support needed
- Use of alternative remedies & social deterrents to adherence must be explored.
- Monitor for IRIS
- Montior renal function at baseline & 3mnths more frequently if risk factors for renal Dx 46

Case 1: Question

• Can you give 2 reasons why this patient might have developed ART resistance?

Would you make any other changes to her medication?


- sdNVP
- Phenobarbitone
- Switch antiepileptic Rx

Case 2

- 17yr \bigcirc on d4T/3TC/EFV since age 14 (2005).
- Baseline CD4 77cells/µl
- At initiation she severe wasting wt 23.4kg
- It was discovered there was poor disclosure to her by her family until 2010 with poor understanding of HIV and ART

Case 2: Clinical Chart

 1st yr good response. The VL was never fully suppressed. Yr later VL ↑ & CD4 ↓

Drug	Mutations	Description	Level	GSS
zidovudine	41L 44D 69N 74V 118I 184V 210W 215Y	High-level resistance	5	0.0
zalcitabine	N/A	N/A	N/A	N/A
didanosine	41L 44D 69N 74V 118I 184V 210W 215Y	High-level resistance	5	0.0
lamivudine	41L 44D 69N 118I 184V 210W 215Y	High-level resistance	5	0.0
stavudine	41L 44D 69N 118I 184V 210W 215Y	High-level resistance	5	0.0
abacavir	41L 44D 69N 74V 118I 184V 210W 215Y	High-level resistance	5	0.0
emtricitabine	41L 44D 69N 118I 184V 210W 215Y	High-level resistance	5	0.0
tenofovir	41L 44D 69N 118I 184V 210W 215Y	Intermediate resistance	4	0.5
nevirapine	103N 106M 108I 227L 230L	High-level resistance	5	0.0
delavirdine	103N 106M 108I 227L 230L	High-level resistance	5	0.0
efavirenz	103N 106M 108I 227L 230L	High-level resistance	5	0.0
etravirine	103N 106M 227L 230L	Intermediate resistance	4	0.5

Case 2: Recommendation

- Pt. failing for long time ⇒ complex resistance pattern
- Durable suppression on std 2nd line regimen likely limited.
- Need new class of ARV ⇒ best combination integrase inhibitor, TDF/3TC & LPVr.

Case2: Questions

- Why so many resistance mutations?
- Outcomes in adolescents vs. older adults?
- What interventions would you put in place for this patient before switching her antiretroviral therapy?

Case2: Answers

- On failing regimen for a very long time, probably in the presence of suboptimal adherence- allowed virus to replicate in the presence of drug ⇒ multiple mutations.
- Adolescents well known for poorer treatment outcomes
- Intensive adherence support by a counselor, adolescent support group.

Case 4

- 45 yr \bigcirc with extensive ARV resistance.
- D4T/3TC/EFV- 03/03/2006 02/01/2009.
- AZT/ddl/LPV/r- 02/01/2009- 25/7/2011

Adherence has always been good except when admitted to hospital in 2008 \Rightarrow claims ARVs were not given to her.

Date	1/06	1/08	8/08	1/10	7/11
CD4	20	43	228	213	337
VL		1 500 000	12 000	24 712	139075
Rx	B/L	Reg1A	Reg 2	Reg 2	Reg 2

Case 4: Genotype: 06/2011

- Major PI: M46I, I54V, L76V, V82C, I84V,
- Minor PI: Q58E
- NRTI: M41L, D67N, K70R, V75M, T215F,K219Q
 NNRTI: V90I, K103S, V106M, E138A, F227L

27th July 2011 Started on TDF/3TC/DRV/r 600/100mg BD

Drug Resistance Interpretation: PR

PI Major Resistance Mutations: PI Minor Resistance Mutations: Other Mutations: M46I, I54V, L76V, V82C, I84V

Protease Inhibitors

atazanavir/r (ATV/r) darunavir/r (DRV/r) fosamprenavir/r (FPV/r) indinavir/r (IDV/r) lopinavir/r (LPV/r) nelfinavir (NFV) saquinavir/r (SQV/r) tipranavir/r (TPV/r) High-level resistance Intermediate resistance High-level resistance High-level resistance High-level resistance High-level resistance High-level resistance

None

None

When maintaine regimen for a lor develop mutation from the same cl exposed to them

PR Comments

PIMajor

 M46I/L are nonpolymorphic PI-selected mutations that reduce susceptibility to ID\ ATV when present with other mutations. M46L also reduces susceptibility to TPV.

Case 4: progress

4th August 2011 (1/52 into 3rd line Rx) developed cough/night sweats/fever. Went to local clinic ⇒ diagnosed smear negative TB⇒ Rifafour.

10th August 2011 returned for follow up:

What would you do at this point?

Case 4: Progress

- 24th August patient still on rifafour and 3rd line agents despite suggestion to stop rifampicin.
- Counseled and now on H/E/Z
- 21 Sept 2011- MDR TB diagnosed and referred to KGV for MDR treatment

Case 4: Progress

Jul 2012	Feb 2013	June 2013
310 11.2%	-	363 15%
15123 (log value)	62160	60584
Reg 3 and MDR TB tx	Reg3 MDR TB Tx	Reg3 and MDR TB tx

Case 4: Genotype: 03/2013

- Major PI: <u>V32I</u>, M46I, I54V, L76V, V82C, I84V
- Minor PI: <u>L10F</u>, <u>L33F</u>, Q58E
- NRTI: M41L, D67N, K70R, V75M, <u>M184V</u>, T215F, K219Q
- NNRTI: K103S, V106M, F227L

HIVdb: Genotypic Resistance Interpretation Algorithm

Date: 12-Jun-2015 21:50:52 UTC

Drug Resistance Interpretation: PR

PI Major Resistance Mutat PI Minor Resistance Mutat Other Mutations:		V32I, M46I, I54V, L76V, V82C, I84V L10F, L33F, Q58E None
Prot	tease In	hibitors
atazanavir/r (ATV/r)	High-le	evel resistance
darunavir/r (DRV/r)	High-le	evel resistance
fosamprenavir/r (FPV/r)	High-le	evel resistance
indinavir/r (IDV/r)	High-le	evel resistance
lopinavir/r (LPV/r)	High-le	evel resistance
nelfinavir (NFV)	High-le	evel resistance
saquinavir/r (SQV/r)	High-le	evel resistance
tipranavir/r (TPV/r)	High-le	evel resistance

PR Comments

PIMajor

Reasons for failure

- Drug drug interactions
- Poorly potent regimen
- Considering etraverine, maraviroc, Raltegravir, DRV/r, tenofovir, 3TC

Conclusion

- Monitor treatment with VL
- All treatment failure is not due to viral resistance
- Must exclude other causes of treatment failure
- Genotypic resistance testing has limitations
- Early detection of resistance and early switch to suppressive regimen imp to prevent amplification of resistance